Mechanistic Cause of Hydrocarbon Specificity over Cu/ZSM-5 and $Co/ZSM-5$ Catalysts in the Selective Catalytic Reduction of NO_x

B. J. Adelman, T. Beutel, G.-D. Lei, and W. M. H. Sachtler¹

V. N. Ipatieff Laboratory, Center for Catalysis and Surface Science, Department of Chemistry, Northwestern University, Evanston, Illinois 60208

Received July 3, 1995; revised September 22, 1995; accepted September 26, 1995

been identified by FTIR spectroscopy. *Nitrito* **groups are most** hydrocarbons shows some resemblance to the chemistry prominent on Co/ZSM-5. These complexes are stable at 150°C of cold flames (13) for which H-abstraction prominent on Co/ZSM-5. These complexes are stable at 150°C of cold flames (13) for which H-abstraction is the first step
in He but are reduced upon exposure to either C₃H₈ or CH₄ in hydrocarbon activation. It has th tures, thermal decomposition yields NO/NO₂, O₂, and H₂O. Only conditions for effective NO_x reduction, then one might
The specific rate of NO reduction over Cu/ZSM-5 decreases expect that all catalysts which form N with Cu loading indicating that isolated $Cu^{2+} \cdot NO_2$ complexes **pay a significant role in the mechanism. The hydrocarbon speci-** to be untrue. Not all catalysts that form NO*^y* are capable **ficity of these complexes thus matches the known catalytic** of catalyzing NO reduction to N_2 with any hydrocarbon.
specificity of NO_x reduction over Cu/ZSM-5 and Co/ZSM-5. Cu/ZSM-5 requires C₃₊ paraffins or C₂₊ **specificity of NO_{***x***} reduction over Cu/ZSM-5 and Co/ZSM-5.** Cu/ZSM-5 requires C_{3+} paraffins or C_{2+} olefins; CH₄ does The mechanistic cause for the catalytic specificity of the ZSM-
not reduce NO to N₂ over **The mechanistic cause for the catalytic specificity of the ZSM-** not reduce NO to N_2 over Cu/ZSM-5 in mixtures with O_2
5 hosted metals in NO_v reduction thus is traced back to the (14) Conversely in similar reacti 5 hosted metals in NO_{*x*} reduction thus is traced back to the (14). Conversely, in similar reaction mixtures, CH_4 structure and reactivity of the specific NO_{*v*} adsorption complexes which these metals produce upon interacting with NO +
 O_2 . The consumption of CH₄ when feeds containing NO, CH₄,

and O_2 are exposed to Cu/ZSM-5 can be attributed to nonselec-

tive combustion with adsorb **with NO**_v. © 1996 Academic Press, Inc. *i v to warrant efficient reduction of NO***. In the present paper**

active in the catalytic reduction of NO by hydrocarbons their thermal stability and chemical reactivity towards (1–4). The addition of O_2 enhances the rate of NO_x reduc- C_3H_8 and CH₄. The nature of the evolved gases has been tion (5, 6). Oxidation of NO has been identified as one of analyzed in separate experiments by ma the main causes of this enhancement. Several reports state In this way, potential reaction steps which are likely to that the oxidation product is not NO_{2gas} (7, 8) but rather occur simultaneously in the true steady state are examadsorbed nitrogen oxide complexes, henceforth to be ined separately. called NO_{v} (9–11).

A difficult, possibly rate limiting step in the reduction **2. EXPERIMENTAL** of NO with alkanes is the rupture of the first C–H bond. Cant and co-workers (12) observed a first order kinetic *2.1. Catalyst Preparation*

step for both N_2 and CO_2 formation. In general, the chemis-**The nature of adsorbed nitrogen oxide complexes (NO***y***) has** try for the selective catalytic reduction (SCR) of NO by

> as well as higher hydrocarbons reduce NO to N_2 over the mechanistic cause of the known hydrocarbon specificity of NO*^y* reduction will therefore be addressed using **1. INTRODUCTION** Cu/ZSM-5 and Co/ZSM-5.

FTIR spectroscopy has been used to identify the NO*^y* Metal exchanged zeolite catalysts have been proven complexes in Cu/ZSM-5 and Co/ZSM-5 and to determine analyzed in separate experiments by mass spectrometry.

isotope effect when CH₄ and CD₄ were used as reductants.
They concluded that H-abstraction was the rate limiting peature (r.t.) using a dilute Cu(OAc)₂ solution added dropwise to a Na/ZSM-5 (UOP lot #13023-60) slurry at a pH ¹ E-mail: WMHS@casbah.acns.nwu.edu. **1 E-mail: WMHS@casbah.acns.nwu.edu.** 1 **E-mail: WMHS@casbah.acns.nwu.edu.** 1 **C**

washed with 1 liter doubly deionized H2O, and air dried. *2.4. Reaction Studies*

Spectra were collected on a Nicolet 60SX FTIR spec-
ent gas. trometer equipped with a liquid N_2 cooled detector. The **3. RESULTS**
samples were pressed into self-supporting wafers and **3.** RESULTS mounted into a pyrex glass cell sealed with NaCl windows. *3.1. FTIR Spectroscopy* Spectra were taken at r.t. accumulating 50 scans at a spectral resolution of 1 cm^{-1} . The samples could be pretreated *in situ* in a gas flow at temperatures up to 500°C in a heating the exposure to NO + O_2 at r.t., followed by purging at zone attached to the glass cell. After *in situ* calcination in 200°C in He. There are three distinct bands at 1628, 1594, UHP O_2 , as described previously, the sample was purged and 1572 cm⁻¹ which are attributed to adsorbed nitrogen at r.t. for 1 h with 25 ml min⁻¹ UHP He then saturated in oxide complexes. These NO_v groups are stable in He at a stream of NO (0.45%) and O_2 (75%) with a He balance. 200°C for over 14 h. However in a dilute C₃H₈ flow at For the reduction studies the samples were heated to the 200° C all band intensities decrease. A plot of the band reaction temperatures at $6^{\circ}/\text{min}$ in flowing C₃H₈ or CH₄ intensities, measured as peak heights and normalized by (0.25% hydrocarbon in He) at a total flow rate of 30 ml their initial intensities, is presented in Fig. 2. The rates of \min^{-1} . Before cooling to r.t., the sample was purged for 10 min with He. Spectra were taken at r.t.

calcined *ex situ* to 500 $^{\circ}$ C in UHP O₂ and then saturated with below thermal decomposition. $NO₂ (0.5%, balance He)$ at r.t. The reactor was transferred After calcination to 500°C in $O₂$, an absorption band at to a glass recirculating manifold equipped with a Dycor 966 cm^{-1} was detected. This band has previously been Quadrupole Gas Analyzer. Prior to the reduction experi- assigned to the T–O–T framework vibration perturbed by ments the sample was heated *in vacuo* to 225^oC for Cu⁺ (15). Upon exposure to NO₂, the band at 966 cm⁻¹ is $Cu/ZSM-5$ and 150°C for Co/ZSM-5. A sample loop was depleted while a band a 918–923 cm⁻¹, framework perthen filled with a known amount of hydrocarbon(5–10 turbed by Cu^{2+} , increases. Additional NO₂ exposure to a Torr); evolved gases were allowed to recirculate over the presaturated Cu/ZSM-5 sample leads to a depletion of the sample. The signal intensities were normalized by an Ar band at 1628 cm^{-1} and the formation of features characterstandard. A secondary loop to the manifold was charged istic of $N_2O_{4 \text{ ads}}$ while the bands at 1594 and 1572 cm⁻¹ are with 3 g of 5 wt% Ni/SiO₂ previously reduced at 400^oC. not affected by additional NO₂. This loop was sealed from the reactor and manifold during Above 300°C in a flow of O_2 , NO and C_3H_8 over the experiment and was used to remove CO during the $Cu/ZSM-5$, absorption bands at 1628 and 1594 cm⁻¹ are

This process was repeated twice. Co/ZSM-5 was prepared

via ion exchange at 80°C of a dilute Co(NO₂)₂ solution

was ione and the continuous flow mode. A Pyrex reactor with a porous frit was

alded drop-wise to a Na/ZS mined from N_2 formation, and C_3H_8 conversion was 2.2. FTIR Spectroscopy **determined from CO₂ formation as detected in the efflu-**

Figure 1a shows the FTIR spectrum of Cu/ZSM-5 after disappearance differ for the three NO_y groups. One of the NO_v groups (1594 cm⁻¹) reacts rapidly, whereas the other (1572 cm^{-1}) reacts sluggishly. The band at 1628 cm⁻¹ ini-2.3. Mass Spectrometric Analysis **2.3.** Mass Spectrometric Analysis **at a comparable rate to the band at 1594 cm⁻¹. In CH₄,** For the analysis of released gases, 400 mg of sample were the $Cu^{2+} \cdot NO_{v}$ groups are not depleted at temperatures

postreaction analysis of the evolved gases. swiftly depleted. Remarkably, in a flow of NO and O_2 , the

 O_2 and purge with He at 200°C; (b) Spectrum of Co/ZSM-5 after room temperature saturation with NO + O₂ and purge with He at 150°C for of the remaining NO_y groups with C₃H₈ or CH₄ at 150°C

as 400° C. Also with this catalyst, the potential intermediate relatively unchanged in He. is thus formed from NO and O_2 and reduced by C_3H_8 at temperatures where NO_x reduction catalysis is known to 3.2. MS Spectrometry occur. However, upon substituting CH₄ for C₃H₈, the NO_{*y*} Figure 4 shows the evolution of N₂, NO, and CO₂ while bands of Cu/ZSM-5 are *not* affected below 400^oC. This is propage is circulated at 225^oC over

ized by initial intensity using C_3H_8 as a reductant: (a) 1628 cm⁻¹, (b) 1594 cm^{-1} , (c) 1572 cm^{-1}

remarkable, since CH_4 combustion with O_2 was found, in separate continuous flow experiments, to be significant below 400 \degree C. The intensities of the IR bands for NO_{*v*} on Cu/ZSM-5 does decrease at 400° C but they remain significant. Similar experiments with Co/ZSM-5 show that no NO_v bands are detectable at 400° C even in the absence of a reductant.

To check the band assignments, spectra were taken of $Na/ZSM-5$ and $SiO₂$ that were impregnated with $Cu(NO₃)₂$. The samples were dried at r.t. to avoid thermal decomposition of the nitrate. Both impregnated samples display IR bands close to the doublet at 1594 and 1572 cm^{-1} . However, the band at 1628 cm^{-1} is only observed in ZSM-5 after heating to 110° C in He. This conversion is irreversible; the band at 1628 cm^{-1} remains unchanged upon cooling the sample to r.t. The band positions and their response to thermal treatment are summarized in Table 1.

In the case of $Co/ZSM-5$ the main feature after NO + $O₂$ saturation is shown in Fig. 1b. It consists of two broad bands at 1526 and 1310 cm^{-1} . The band at 1526 $cm⁻¹$ is ascribed to an adsorbed nitrogen oxide complex. This complex is less stable than the $Cu^{2+} \cdot NO_y$; approxi-FIG. 1. (a) Spectrum of Cu/ZSM-5 after r.t. saturation with NO + mately 60% of the $Co^{2+} \cdot NO_y$ adsorbates are desorbed and purse with He at 200°C: (b) Spectrum of Co/ZSM-5 after room after thermal treatment at 150°C for 1 14 h. is shown in Fig. 3 displayed as the decrease in the intensity of the absorption band at 1526 cm^{-1} normalized by the initial intensity. The band intensity decreases bands are quickly restored even at temperatures as high faster in the presence of C_3H_8 than CH_4 and remain

propane is circulated at 225°C over a Cu/ZSM-5 sample that was presaturated with $NO₂$ at r.t. and evacuated at 225° C. The spectra have been normalized by a known Ar signal, and differences in sensitivity have been compensated using literature values (16). As N_2 , N_2O , C_3H_8 , CO, and CO_2 contribute to mass 28, the determination of N_2 is not trivial. The contribution from the fragment of C_3H_8 was calculated from the mass 29 signal and a calibration factor was determined from the spectrum of C_3H_8 . Likewise, the contribution to mass 28 from the fragmentation of $CO₂$ was determined by calibration as a fraction of the mass 44 signal and subtracted from the mass 28 peak. With these corrections the quantity of N_2 was analyzed and found to be significant. After 2 h of propane recirculation, the reaction mixture was exposed to the previously reduced $Ni/SiO₂$ trap. (Separate experiments show that the prereduced $Ni/SiO₂$ trap is an excellent CO scavenger.) The normalized signal intensity for mass 28 did not de- **FIG. 2.** Depletion of absorption bands in Cu/ZSM-5 vs time normalcrease indicating that CO is not a gas phase product. A . loop of the recirculation system was immersed in liquid

ABI

Bands Detected on Cu(NO₃)₂ Impregnated Samples

however, after 2 h recirculation the vast majority of the C_3H_8 and undetectable over Cu/ZSM-5. mass 28 signal can be attributed to N_2 .

No reaction between NO*^y* groups and CH4 was detect- *3.3. Reaction Studies*

able for Cu/ZSM-5.

Figure 5 shows the evolution of N₂, NO, and CO₂, nor-

Figure 7 shows the specific rate of NO_x reduction versus

malized by the measured Ar signal, while C₃H₈ was circu-

lated at 150°C over tions with Cu/ZSM-5, N_2 and CO₂ evolutions are detectable in significant amounts, though their rates of formation **4. DISCUSSION**

nitrogen to remove N₂O from the gas phase. The signals are lower. It is thus certain that the NO_y formed in Co/ for mass 30 (NO) and 44 (N₂O and CO₂) decreased signifi- ZSM-5 can be reduced with CH₄ to form N₂. A comparison cantly while the mass 28 signal remained almost un- of both reductants and both catalysts is presented in Fig. changed. This indicates that some N₂O may have formed; 6. Clearly, NO_y reduction with CH₄ is slower than with

NO*^x* reduction over Cu/ZSM-5 and Co/ZSM-5 occurs below the light-off temperature for homogeneous combustion of hydrocarbons in $NO₂$ (13). The rate limiting step for NO_x reduction does not appear to occur in the gas phase. The present FTIR results show that sorbed NO*^y* groups (nitrito for Co and nitro/nitrate for Cu) are thermally stable at 150° and 225° C respectively, but these complexes are quite reactive towards hydrocarbons, as is manifested for both catalysts by the rapid decrease of their band intensities in the presence of C_3H_8 . The present results thus indicate that these groups are potential reaction intermediates, as has been suggested previously $(9-11)$.

The infrared data clearly show that the NO*^y* complexes can be removed from the surface of the sample below the temperatures of their thermal decomposition. The mass FIG. 3. Depletion of absorption band at 1526 cm⁻¹ in Co/ZSM-5 vs spectrometric analysis of the desorbed products shows that time normalized by the initial intensity using: (a) CH₄, (b) C₃H₈ as NO_y can be reduced to N₂ by hydrocarbons at temperatures a reductant. where no thermal decomposition occurs. Moreover, ther-

FIG. 4. Evolution at 225°C of (a) CO₂, (b) N₂, and (c) NO from Cu/ZSM-5 upon exposure to C₃H₈ as detected by mass spectrometry. The Cu/ZSM-5 sample was presaturated with $NO₂$ at r.t. and evacuated to 225°C.

FIG. 5. Evolution at 150°C of (a) CO₂, (b) N₂ and (c) NO from Co/ZSM-5 upon exposure to C₃H₈ as detected by mass spectrometry. The Co/ZSM-5 sample was presaturated with $NO₂$ at r.t. and evacuated to 150°C.

FIG. 6. Evolution of N₂ from (a) Cu/ZSM-5 exposed to C₃H₈ at 225°C; (b) Co/ZSM-5 exposed to C₃H₈ at 150°C; (c) Co/ZSM-5 exposed to CH₄ at 150°C; (d) Cu/ZSM-5 exposed to CH₄ at 225°C.

FIG. 7. Specific rate versus Cu exchange level. 0.20 g Cu/ZSM-5; 1000 ppm NO, 1000 ppm C_3H_8 , 20,000 ppm O_2 and He balance. T_{rxn} = *Note*. Inlet feed composition: 1000 ppm NO, 1000 ppm C_3H_8 . Total 400°C. Total flow rate 200 ml/min⁻¹.

mal decomposition of NO*^y* on Cu/ZSM-5 leads to the evo- and CH4 are exposed to Cu/ZSM-5 at elevated temperalution of NO, NO₂, O₂, and H₂O; only chemical reduction tures, CH₄ combustion is rapid (2, 4, 14). At 350°C in a leads to N_2 . It follows that formation and reduction of flow of NO and O_2 , the IR NO_{*y*} band intensities are not NO*^y* groups are important steps in the reaction mechanism affected by the addition of CH4 . Yet, at this temperature, of SCR over both Co/ZSM-5 and Cu/ZSM-5. CO₂ evolution and CH₄ consumption are detected in the None of the band intensities for Cu/ZSM-5 decrease in continuous flow system. It is conceivable that this CH_4 the presence of CH_4 at 200 $^{\circ}$ C. Additionally, nonselective combustion depletes the coverage of the surface with adinteraction between CH₄ and NO_y at 225°C has been ruled sorbed oxygen. The observed decrease in intensity of the out since evolution of NO and CO_2 is not detected by mass NO_y band at 400°C might be due to a reversible equilibrium spectrometry. However, when feeds containing $NO, O₂$, of NO_y and adsorbed oxygen rather than any direct chemical interaction between NO_y and $CH₄$. Whereas thus no interaction between NO_y and CH_4 is observed for Cu/ZSM-5, the situation is different for Co/ZSM-5; in this case all data indicate direct chemical interaction between

TABLE 2

Cu/Al	$O2$ inlet	% NO.	% C_3H_8
	concentration	conversion	conversion
0.068	20000 ppm	37.8	20.2
	20000 ppm	without NO	56.2
0.185	7500 ppm	92.4	81.7
	7500 ppm	without NO	91.2
0.560	20000 ppm	64.1	97.1

flow rate: 200 ml min⁻¹. T_{rxn} = 400°C. 0.20 g catalyst.

similar to the steady state data. The mass spectrometric The different rate of response to C_aH₈ of three NO₂ bands $Cu/2SM-S$. Additionally, the N₂/CO₂(0.61) and proves that they correspond to different species wit

 1572 cm^{-1} . These bands are therefore assigned to nitrate

tate nitrate. A band at 1575 cm^{-1} has been ascribed by London and Bell to a $Cu(NO₃)₂$ on silica (19).

(2) When NO is adsorbed on $Cu/ZSM-5$, $Cu⁺ \cdot NO$ complexes are formed as evident by the T–O–T framework vibration at 966 cm⁻¹. Adsorption of NO + O_2 erodes the band intensity at 966 cm^{-1} and causes an increase in the band intensity at $918-923$ cm⁻¹. These changes are indicative of Cu^+ oxidation to Cu^{2+} as nitrate groups are formed. Therefore all NO_v groups are coordinated to $Cu²⁺$.

FIG. 8. Proposed structure of mono- and bidentate nitrate formed (3) After additional exposure to $NO₂$, only the band at by the reaction of NO₂ with [Cu-O–Cu]^{2+} oxocations. 1628 cm⁻¹ transforms to a feature that is characteristic of $N_2O_{4,ads}$, suggesting that the band at 1628 cm⁻¹ is a nitro group (N bound NO_2 complex) associated with a Cu^{2+} ion. NO_y and CH₄ even at 150°C as seen by the evolution of This process was found to be reversible as the band at N_2 and CO₂ in the MS experiments.
It is important to note that the MS data show a behavior gas phase.

It is known that Cu/ZSM-5 contains Cu²⁺ ions, [Cu-O-
Cu]²⁺ oxocations and CuO oxide clusters (18). Upon interaction with NO₂, the oxocations and oxides react to form
action with NO₂, the oxocations and oxides reac (1) The samples that were impregnated with Cu nitrate nitrate ions should be a minority species if present at all, show IR bands which are close to the doublet at 1594 and as their formation would appear to violate the principle of charge conservation. Based on the greater line width of ions. These are most likely bridging two Cu sites in a the absorption band at 1526 cm^{-1} as compared to the nitro bidentate and monodentate form as shown in Fig. 8. The complex formed on Cu^{2+} ions (band at 1628 cm⁻¹, see distinction between the latter two forms suggests assign- Fig. 1a), we prefer to ascribe the band at 1526 cm⁻¹ to a ment of the 1594 cm⁻¹ band to a bridging monodentate $Co^{2+} \cdot ONO$ complex rather than to a $Co^{2+} \cdot NO_2$ Co^{2+} \cdot ONO complex rather than to a Co^{2+} \cdot NO₂ complex. nitrate while the band at 1572 cm⁻¹ is more likely a biden- Windhorst and Lunsford (22) observed a band at 1520

	Support	Assignment	Ref.	5. CONCLUSIONS	
1628 cm ⁻¹	$Cu/ZSM-5$	$NO2$ (nitro)	This work	The different chemistry of zeolite ZSM-5 hosted Cu and	
1594 cm ⁻¹	$Cu/ZSM-5$	$NO3$ (monodentate)	This work	Co results in different types of chemisorbed NOv com-	
1572 cm ⁻¹	$Cu/ZSM-5$	$NO3$ (bidentate) $NO3$ (monodentate)	This work 19	plexes when these materials are exposed to $NO + O2$. These have been identified by FTIR spectroscopy, their	
1526 cm ⁻¹	Co/Y	ONO (nitrito)	22	reactivity towards hydrocarbons and their thermal decom- position have been measured and compared with the litera-	
1310 cm^{-1}	$Co/ZSM-5$	ONO (nitrito) $NO2$ (nitro) $O2N$ (chelating nitro)	This work 23 23	ture. With Co/ZSM-5 nitrito groups are most prominent, they are able to react with $CH4$ and higher hydrocarbons; this interaction leads to formation of N_2 . The different	

complexes have symmetric and antisymmetric stretching $Co²⁺$ ONO with $Co²⁺$ ONO being the dominant moiety.

Both can form nitro or nitrito complexes; however, N NO_y groups in both catalysts. CH₄ combustic bound nitro complexes $(Cu^{2+} \cdot NO_2)$ are predominant on ZSM-5 does not proceed via the NO_y groups. bound nitro complexes $(Cu^{2+} \cdot NO_2)$ are predominant on Cu/ZSM-5 while O bound nitrito complexes $(Co^{2+} \cdot ONO)$ are predominant on Co/ZSM-5. Only in Cu/ZSM5 are **ACKNOWLEDGMENTS** nitrate ions formed. They exist in two structures as bridging
mono- and bidentate nitrates. In the recirculation experi-
Motor Corporation, and Engelhard Corporation. T. Beutel thanks the ments, only NO_y on $Co/ZSM-5$ reacts with CH_4 , and N_2 Deutsche Forschungsgemeinschaft for the stipend enabling him to do evolution is detected. With higher hydrocarbons, NO_y on research at Northwestern University. both Co/ZSM-5 and Cu/ZSM-5 reacts with C_3H_8 , and N₂ evolution is detected. These differences are responsible **REFERENCES** for the known hydrocarbon specificity observed during
steady state flow reactions even though hydrocarbon acti-
vation Occurs in all cases via H-abstraction mediated by
2. Li, Y. and Armor, L., *Appl. Catal. B: Environ.* 1 the NO*^y* groups. Since the NO*^y* formed on Co/ZSM-5 3. Li, Y. and Armor, J. N., *Appl. Catal. B: Environ.* **2,** 239 (1993). differs greatly from those on Cu/ZSM-5, it is therefore 4. Burch, R. and Scire, S., *Appl. Catal. B: Environ.* **3,** 295 (1994). possible to rationalize the observation that not all catalysts 5. Iwamoto, M., *in* "Proc. of the Meeting of Catalysis Technology for the Removal of Nitrogen Monoxide", p. 17, Tokyo, Japan, 1990. which form NO_y groups are capable of catalyzing NO re-
duction to N_2 with any hydrocarbon even though their
formation is pivotal in the reaction mechanism.
7. Bethke, K. A., Li, C., Kung, M., Yang, B. and Kung, H. H.

The reaction steps of the hydrocarbon radical formed Lett. **31,** 287 (1995).

Let loss of a hydrogen atom are not yet clear. It has been 8. Chajar, Z., Primet, M., Praliaud, H., Chevrier, C. and Mathis, F., after loss of a hydrogen atom are not yet clear. It has been
proposed that a reactive intermediate containing at least
one carbon, nitrogen and oxygen atom is formed on the the B. B. H., Y. and Armor, J. N., J. Catal. 150, catalyst surface (24–26). This problem is still under investi- *Lett.* **32,** 83 (1995).

TABLE 3 gation and so is the question whether the two nitrogen atoms which form N2 have equal or different histories. **Band Assignments of NO***^y* **Groups**

5. CONCLUSIONS

The different chemistry of zeolite ZSM-5 hosted Cu and Co results in different types of chemisorbed NO_v complexes when these materials are exposed to $NO + O₂$. These have been identified by FTIR spectroscopy, their reactivity towards hydrocarbons and their thermal decomthis interaction leads to formation of N_2 . The different NO*^y* complexes formed, nitrate and nitro groups, upon interaction of $NO + O₂$ with Cu/ZSM-5 reflect the variety cm⁻¹ upon adsorption of NO₂ on Co/Y which they assign of Cu species in this zeolite: Cu²⁺ ions, oxo-complexes and to a Co²⁺ · ONO complex Additionally chelating oxide clusters. None of these NO_y groups interact to a $Co^{2+} \cdot ONO$ complex. Additionally, chelating, oxide clusters. None of these NO_y groups interact with $Co^{2+} \cdot O_2N$ complexes have antisymmetric stretching fre-
methane under the conditions studied; but these comple $Co^{2+} \cdot O_2N$, complexes have antisymmetric stretching fre-
quencies in the range of 1300 cm⁻¹ and nitro, $Co^{2+} \cdot NO_2$, react with propane, and N_2 is formed. The decrease in quencies in the range of 1300 cm⁻¹ and nitro, $Co^{2+} \cdot NO_2$, react with propane, and N_2 is formed. The decrease in complexes have symmetric and antisymmetric stretching specific rate as Cu loading increases indicates frequencies at 1330 and 1430 cm⁻¹, respectively (23). It is clear Cu²⁺ and, therefore the nitro groups, play a more possible that the broad absorption at 1310 cm⁻¹ contains active role in the reduction mechanism. In clear Cu^{2+} and, therefore the nitro groups, play a more possible that the broad absorption at 1310 cm⁻¹ contains active role in the reduction mechanism. In contrast to several components. $Co^{2+} \cdot DoN$. $Co^{2+} \cdot NO_2$ and chemical reduction, thermal decomposition of these comseveral components, $Co^{2+} \cdot O_2N$, $Co^{2+} \cdot NO_2$ and chemical reduction, thermal decomposition of these com-
 $Co^{2+} \cdot ONO$ with $Co^{2+} \cdot ONO$ being the dominant moiety. plexes results in formation of NO and NO₂ but not N₂. Unlike $Cu^{2+} \cdot NO_2$, the $Co^{2+} \cdot NO_v$ complexes formed are ^{On both} catalysts, when a chemical interaction between most likely nitrito complexes. a hydrocarbon molecule and adsorbed NO_y occurs, this A list of band assignments is presented in Table 3. reaction leads to H-abstraction and possibly formation of In summarizing, the chemistry of the NO_y groups in free radicals. The known differences in steady state hydro-
colite hosted Cu and Co systems is distinctly different carbon specificity arise from the different chemistry zeolite hosted Cu and Co systems is distinctly different. carbon specificity arise from the different chemistry of the
Both can form nitro or nitrito complexes: however, N $\overline{N}O_y$ groups in both catalysts. CH₄ combus

-
-
-
-
-
-
- 7. Bethke, K. A., Li, C., Kung, M., Yang, B. and Kung, H. H., *Catal.*
-
-
-
- 265 (1995). P. and Riccio, A., *Catal. Lett.* **23,** 141 (1994).
- 12. Cowan, A. D., Dümpelmann, R. and Cant, N. W., J. Catal. 151, 21. Li, Y., Slager, T. L. and Armor, J. N., J. Catal. 150, 388 356 (1995). (1994).
- 13. Witzel, F., Sill, G. A. and Hall, W. K., *J. Catal.* **149,** 229 (1994). 22. Windhorst, K. A. and Lunsford, J. H., *J. Am. Chem. Soc.* **97,** 1407
- 14. Iwamoto, M. and Hamada, H., *Catal. Today* **10,** 57 (1991). (1974).
-
- 16. Corna, A. and Massot, R. (Eds.), ''Compilation of Mass Spectroscopy nation Compounds,'' Wiley, New York, 1978.
- 17. Moretti, G., *Catal. Lett.* **23,** 135 (1994). **2,** 147 (1993).
- 18. Sa´rka´ny, J., d'Itri, J. L. and Sachtler, W. M. H., *Catal. Lett.* **16,** 25. Kharas, K. C. C., *Appl. Catal. B: Environ.* **2,** 207 (1993).
- 19. London, J. W. and Bell, A. T., *J. Catal.* **31,** 32 (1973). **4,** L1 (1994).
- 11. Lukyanov, D. B., Sill, G., d'Itri, J. L. and Hall, W. K., *J. Catal.* **153,** 20. Campa, M. C., Indovina, V., Minelli, G., Moretti, G., Pettiti, I., Porta,
	-
	-
- 15. Sa´rka´ny, J. and Sachtler, W. M. H., *Zeolites* **14,** 7 (1994). 23. Nakamoto, K. *in* ''Infrared and Raman Spectra of Inorganic Coordi-
	- Data'' Heyden: London, 1966. 24. Ukisu, Y., Sato, S., Abe, A. and Yoshida, K., *Appl. Catal. B: Environ.*
		-
	- 125 (1992). 26. Tanaka, T., Okuhara, T. and Misono, M., *Appl. Catal. B: Environ.*